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Abstract

In this paper we study the robustness with respect to stability of the
closed-loop system with collocated rate sensors using LQG (mean square rate)
optimized compensators. Our main result is that the transmission zeros of the

compensator are precisely the structure modes when the actuator/sensor
locations are "pinned" and/or "clamped": i.e., motion in the direction sensed is
not allowed. We have stability even under parameter mismatch, except in the
unlikely situation where such a mode frequency of the assumed system
coincides with an undamped mode frequency of the real system and the
corresponding mode shape is an eigenvector of the compensator transfer
function matrix at that frequency. For a truncated modal model -- such as that
of the NASA LaRC Phase Zero Evolutionary model -- the transmission zeros

of the corresponding compensator transfer function can be interpreted as the
structure modes when motion in the directions sensed is prohibited.
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1. Introduction

The robustness of control laws to parameter uncertainty is of particular importance
to Space applications because testing large structures under the micro-g conditions in Space
is not possible on the ground. This paper explores the robustness issue for LQG optimized
compensators using the explicit form discovered by the author for their time and/or
frequency domain representation, whatever the structure model used -- whether it is FEM,
Truncated Modal, or Continuum.

The basic properties affecting robustness of the LQG optimized compensator are
developed in Section 2 and how they relate to robustness is examined in Section 3.
Section 4 deals with continuum models where in particular we show that the transmission
zeros are the modes of the structure when the actuator/sensor locations are "pinned" and/or
"clamped," i.e., motion in the directions sensed is restricted, generalizing the usual
notions for simple beams.

When a truncated modal model is available, the compensator can be expressed
explicitly also in terms of the given modes and mode shape vectors. The transmission
zeros of these approximate compensators are studied in Section 5 and in particular some
numerical results are presented for the NASA LaRC Phase Zero Evolutionary Model.
Conclusions are in Section 6.

2. The LQG Optimized Compensator

To state the LQG problem, we begin with the canonical time-domain dynamics of a
flexible structure with collocated rate sensors which, whether it is a Finite Element Model
or Truncated Modal model (and hence finite dimensional) or a Continuum Model (and

hence infinite-dimensional), can be expressed in the form:

MYc(t) + Ax(t) + Bu(t) + BNa(t )

v(t) = B*_(t) + Nr( 0

where in the case of FEM,

M

A

B

u(.)

x(-)

v(.)

B*

Nr(')

= 0 } (2.1)

is the mass matrix (nonsingular, nonnegative definite)

is the stiffness matrix (nonsingular, nonnegative definite)

is the control matrix (rectangular matrix)

is the control vector (nxl, assuming n actuators)

is the "displacement" vector

is the actuator noise assumed white Gaussian with spectral
density dal, 1 being the nxn Identity matrix

is the sensor output

represents the transpose of B

is the sensor noise assumed white Gaussian with spectral density drI.
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For the ContinuumModelsucha representationcontinuesto hold,howevercompli-
catedthe structure,with x(.) now allowed to range in a Hilbert space _, with A, M, B

being linear operators:

bounded linear, self-adjoint, nonnegative definite with M-I bounded;M

A

B

B*

See [1, 21.

closed linear, self-adjoint, nonnegative definite with compact resolvent,
the resolvent set including zero

maps E" Euclidean n-space into _, and

represents the adjoint of B.

The LQG problem we shall consider is that of finding the control u(.) (or equiva-
lently the optimal compensator) that minimizes the mean square time average of the rate:

where _, > O.

}1 i m IlB*Sc(t)l[2 at + _ f Ilu(t)ll2 dt (2.2)
Too* 0

It is shown in [1, 3] that under the "controllability" assumption that

B*_k ¢ 0

for any k, where _k are the modes orthonormalized with respect to the mass matrix:

AOk = 03_M_k ; [M_k, _k] = 1 , (2.3)

the optimal compensator transfer function (nxn matrix function) can be expressed in the

explicit analytical form:

_(p) = gpB*(p2M + A + ]tpBB*)-I B , Re. p > 0 (2.4)

where

"_l-da / dr . r-, 1

g = 42 ; "_ = _aa/d, + -_ •

Moreover, the corresponding mean square control power is given by

limTf rltu(t)ll2 dt = Tr. (B*MB)- 1
Too,, 0

and the corresponding mean square displacement is:

1 T [1 im _ f IIB*x(t)[[2 dt = +
T-_oo 0

See [4] for the corresponding time-domain version of (2.4).
deduce readily that

(2.5)

(2.6)

42
1

J Tr. B'A- B (2.7)2

From (2.3) we can
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(i) As _,-40, g-4oo and ),-4oo we note that _-4_ and hence

v(p) -4 1 a/d,

where the right side is recognized as is the optimal "static" or "direct connection" or
"PID" controller. Note that as _, -4 0, the control power given by (2.6) becomes infinite,
as we expect.

(ii) _(p) is "positive real" -- that is to say:

_(p) holomorphic in Re.p > 0

_(p) + _(p)* nonsingular, and positive definite, for Re. p > 0

where * denotes conjugate transpose. We shall prove this directly, here, even though it
may be deduced from the results in [1]. In fact

(p2M + A + "ypBB*)x = 0

implies that

and normalizing so that

we obtain

p2[Mx, x] + [Ax, x] + 'yPllB*xll 2 = 0

[Mx, x] = 1

p2 + .yPlln.xll 2

Because of our assumption that B*%

and hence

+ [Ax, x] =0.

is not zero for any k, we see that

IIn*xll > 0

Re.p < 0.

This is enough to imply that in the finite-dimensional case:

(p2M + A + TpBB*) -1

is holomorphic in Re.p > 0. In the infinite dimensional case the fact that A has a
compact resolvent implies that so does

p2M + A + "ypBB*

and hence it follows that

is holomorphic in Re.p > 0,
Next let us calculate

B*(p2M + A + TpBB*)-IB

and in fact is an _ function.

_(P) + _I/(P)*, Re.p >0.
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We have

_(p) + _(p)*
2

which is > 0, since

is, for Re.p_>0.
In particular for

we have

= B*(p2M + A + ypBB*)-1

• [IPl2(p+_)M + (p+ff)A + 2yIplZBB*](-fi2M + A + "y-ffBB*)-IB

IPl2(p + fi)M + (p + fi)A + 2TlPlZBB *

w(io) + _l/(io)*
2

p = io,

= yo2_(io)_(io)* .

This leads to an important result which we state as:

Lemma 2.1

Suppose for some o, -_oo < o < oo,

Then

Re. [_(io)v, v] = 0

_(io)v = 0

B*(-o2M + A)-IBv = 0 .
and if o _ 0,

•-e_ < (.D < oo

(2.8)

for some v. (2.9)

(2.10)

(2.11)

Proof

which by (2.8) is

Re. [_(io)v, v] [[W(ira) + v(io)*= 2 )

= yo2IIw(i0D*vll 2

and hence (2.9) is equivalent to:
c011w(io)*vll = 0.

If c0=0, _(i0_)=0 and hence
If (0 is not zero,

or

v, v]

Let

B*(-0)2M + A - iyoBB*)-IBv = O.

or

(-o2M + A - iyoBB*)-aBv = x

Bv = --o2Mx + Ax - iyo3BB*x.
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Since
B*x = O,

we have
Bv = (-to2M + A)x

and o is not an eigenvalue of A, since B*x ---0. Hence

B*(-to2M + A)-IBv -- 0.

Corollary.
Except for co -- 0, the zeros of

Det Iw(ito) + w(ito)*l

in -oo<to<_ are the same as those of

Det IB*(-to2M + A)- 1B[ = 0

and in particular independent of g and y, for g + y < ,,_.

Proof
Det [w(ito) + w(ito)*l = 0

implies that
[(xl/(ito ) + w(ito)*)v, v] = 0 , v_O

and hence by the lemma,
_(ito)*v = 0

and since to _ 0,
B*(-to2M + A)-IBv = 0

or,

Det tB*(-to2M + A)-IBI = O.

Conversely if
Det IB*(-to2M + A)-1BI = 0,

so that
(B*(-o2M + A)-lB)v = 0

let
(-to2M + A)-IBv = x.

The n
Bv = -to2Mx + Ax = --_2Mx + Ay+ y(ito)BB*x

for arbitrary value of y, since B*x = 0. Hence

B*(-to2M + A + y(ito)BB*)-l Bv = 0
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or

(_(im) + _(io_)*)v = 0

or

Det Igt(im) + gffim)*l = 0.

3. Robustness

The robustness of concern is that with respect to parameter uncertainty, in particular
in the mode frequencies (ok. Thus we want to be able to assert that the closed-loop
system is stable even if the parameters chosen for the compensator transfer function _(.)
are incorrect. Now the closed-loop transfer function corresponding to the compensator
transfer function V(') is given by

(p=M + A + "_pB_(p)B*) -1 (3.1)

Let p be a pole of (3.1), so that for some x, 0,

p2Mx + Ax + 'ypBgt(p)B*x = O. (3.2)

Then

p2[Mx, x] + [Ax, x] + "_p[B_(p)B*x, x] = 0

where [Mx, x] > O.
If p=0, then

Ax = 0

which is not possible since zero is not an eigenvalue of A -- this property of the system
is assumed to be known with certainty. If p _: O, we may divide through by p to get

p[Mx, xl + [Ax, xl + "y[Bllt(p)B*x, x] = 0.
P

Let

p = ot + ion, _>0.

Then

otIAx, x ]
ot[Mx, xl + ot2 + o_ + _,[B(_(p) + _ll(p)*)B*x, xl = 0. (3.3)

Suppose ot > 0. Then by the positive real property, the third term in (3.3) is positive and
the first two terms are of course positive, and hence the sum cannot be zero and hence ot

cannot be positive. Consider next the case ot = 0. This yields

(im)[Mx, x] - i[Ax, x] + _t[Bllt(iol)B*x, x] = O.
03

For this to hold, it is necessary that

Re. [Bgt(io_)B*x, x] = 0

where B*x cannot be zero. Hence, by the lemma

_(im)B*x = O, B*x _a 0 .
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But this in turn by (3.2) would imply that

-032Mx + Ax = O; B*x _ 0

J_(io_)B*x = 0

(3.4)

In other words an undamped mode-frequency of the system must coincide with a zero of
_(ito) corresponding to the same value of B*x ("mode shape at the sensor location").
Thus we have robustness with respect to stability so long as this is insured against. Be-
cause of the coincidence requirement on the mode shape in addition to the frequency, this
is highly unlikely if the controller dimension (number of actuators) is higher than one.

4. Continuum Models

For the case of the continuum model, whether explicit or conceptual, we can relate

the zeros of the compensator transfer function to the model in a simple way -- viz., we
can show that they are the "pinned" and/or "clamped" mode frequencies of the structure
or a slight generalization thereof.

We begin with the general case of a multi-beam model as the NASA LaRC Phase
Zero Evolutionary Model [5]. Here the state variable x(.) has the form (see [2]):

where f(.) represents the displacement (6x l) vector and b the corresponding "boundary"
values at the nodes, and thus a finite dimensional vector. Also

Mx = IM°f
M b b

Ax = IA°f

I abf
x _ _)(A)

[°lBu = Bu u
(where B*B u is nonsingular)

where the dimension of U (the control vector) can be smaller than that of b, and B,,

maps U into the finite-dimensional space spanned by b. In this case

Det [B*(-co2M + A)-1BI = 0 (4.1)

and equivalently, for some v:

(-o2M + A)x = By; B*x = 0 ;

which under the notation:

X
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becomes:

--_2Mof + Aof = 0 (4.2)

B*b = 0 (4.3)

-o_2Mb b + Abf = B,,v (4.4)

The condition (4.4) is superfluous since v is not specified and all we require is that v

and hence Buv be nonzero. Thus the transmission zeros are the eigenvalues of the
differential operator A0 with the "boundary condition" specified by

--_2Mof + Aof = O; B*b = 0. (4.5)

These are recognized as structure modes when the control/sensor locations are "pinned"
and/or "clamped" -- motion in the directions sensed is not allowed. The structure modes
when all nodes are clamped are of course given by:

-o32Mof + Aof = O, f;t 0

Jb=O.
(4.6)

If all nodes are control nodes so that B u is the identity, these are also transmission zeros
but not in general because of the additional condition (4.4).

As shown in [3], (4.1) can be further reduced to:

IB*(-o32Mb + T(io_))- 1Bu I = 0 (4.7)

where the "clamped" mode frequencies given by (4.6) are the "poles" of the matrix T(ico).
A textbook example of (4.7) is provided by the torsion of a one-dimensional beam

with one end clamped and the other end the control node. Here T(io3) is given by (see
[3] for details):

T(ico) = _/pG Iv co cot (2g p'_ )o_

and hence the compensator transmission zeros are given by

sin (2_/p/G)co = 0

or
nr_

o) -
2£_/p/G

whereas the structure undamped modes are given by

m(o = (_)lv cot(2£ p'_)co.

Note that asymptotically these frequencies merge -- a phenomenon which can be proved
to hold generally. In this (one-dimensional) case the zeros and poles of

(-O_2m + T(ico))

alternate (an instance of Foster's Theorem familiar in classical circuit analysis [6]) and
hence also the compensator transmission zeros and undamped mode frequencies -- but
this is no longer true in general in the multidimensional case.
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5. Truncated Modal Model

Truncated Modal models provide both the (undamped) mode frequencies 0)k and the
corresponding mode shapes (column vectors of dimension equal to the control dimension)

B*q_k at the sensor locations up to a maximum frequency allegedly adequate for faithful
representation of the structure. Assume thus that 0)k, B*_k are given for k = 1..... N.
Then we may consider this the "truth model" and the corresponding optimal compensator
transfer function takes the form (see [4]):

gpB_(p2l + Do + yPBNB_)-IBN (5.1)

where
DN = Diag. (0)12..... 0)2 )

= [B*¢I B**2 "" B*¢N [.×N

(B*_ 1 )*

=

INxn

where n is the control dimension (equivalently, the number of actuators). It is assumed

that N is large enough so that the nxn matrix:

B_BN

is nonsingular. Then omitting 0) = 0, the transmission zeros of the transfer function (5.1)
are given by

Det IBm(-0)21 + DN)-IBNI = 0. (5.2)

For large enough N we should expect these frequencies to closely approximate the
structure mode frequencies when motion is restricted along the directions sensed at the
actuator/sensor locations. In particular if the theoretical values of the latter are known, we
have a means of checking the faithfulness of the truncated model.

For the NASA LaRC Phase Zero Evolutionary Model [5], the truncated modal model
has 86 modes. For the corresponding mode shapes as determined by the LaRC team, the
frequencies for which (5.2) hold are shown in Figures 1 through 6, where the minimum
absolute value of the eigenvalues of

B_(-0)2I + DN)-iBN

is plotted as a function of omega for N -- 86. Note that all the eigenvalues are positive
for co < 0)_ and negative for 0) > 0)1v. Figure 1 shows the entire range from 0-300

radians/second. Figures 2-6 show more detail of the behavior over narrower ranges.
The dependence of zeros on the depth of the modal approximation is illustrated in

Figures 7, 8, 9, la, 2a, 3a, 4a, 6a and 10a for N = 8, 16, 30, corresponding to
0)8 = 10.921, 0)16 -- 25.225, 030 = 53.132, respectively. Note that for the 8-mode model
there are no zeros at all, while the 16-mode model shows three zeros (in the range 0-25

rad/sec). The 30-mode model shows excellent agreement with the 86-mode model for co

up to o)30 = 53.132, comparing Figures 1 and la, 2 and 2a, 3 and 3a, 4 and 4a, 6 and 6a,
and finally Figures 10 and 10a show the expected divergence for 0) > 030- For illustrative

purposes we list the first few zeros for the full 86-mode model in rad/sec:
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(5.4913)

6.575

8.75

(9.2580)

(14.46)

14.7

(15.26)

where the numbers in parentheses are the nearest undamped mode frequencies.

6. Conclusions

It is shown that the optimal compensator transfer function for LQG rate minimization
for flexible structures with collocated rate sensors has transmission zeros at frequencies to
the modes of the corresponding continuum structure when the control-sensor locations are
"pinned" and/or "clamped" (motion in the directions sensed is curbed). In particular the
compensator is robust with respect to stability so long as any such mode of the assumed
system does not coincide with an undamped mode frequency of the real system and the
corresponding mode shape at the sensor locations is an eigenvector of the compensator
transfer function matrix at that frequency. For Continuum Models the transmission zeros
are shown to be the poles of a matrix function related to the undamped modes. Calcu-
lations of the zeros are given for the truncated modal models of the NASA LaRC Phase
Zero Evolutionary Model illustrating the dependence on the number of modes used.
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Minimum Absolute Eigenvalue: 30-mode Truth Model
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Minimum Absolute Eigenvalue: 8-mode Truth Model
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Minimum Absolute Eigenvalue: 16-mode Truth Model
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Minimum Absolute Eigenvalue: 16-mode Truth Model
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Minimum Absolute Eigenvalue: 30-mode Truth Model
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